"FAIR in Action — A Flexible Framework to Guide FAIRification"


The COVID-19 pandemic has highlighted the need for FAIR (Findable, Accessible, Interoperable, and Reusable) data more than any other scientific challenge to date. We developed a flexible, multi-level, domain-agnostic FAIRification framework, providing practical guidance to improve the FAIRness for both existing and future clinical and molecular datasets. We validated the framework in collaboration with several major public-private partnership projects, demonstrating and delivering improvements across all aspects of FAIR and across a variety of datasets and their contexts. We therefore managed to establish the reproducibility and far-reaching applicability of our approach to FAIRification tasks.

https://doi.org/10.1038/s41597-023-02167-2

| Research Data Curation and Management Works |
| Digital Curation and Digital Preservation Works |
| Open Access Works |
| Digital Scholarship |

Avatar photo

Author: Charles W. Bailey, Jr.

Charles W. Bailey, Jr.