Jupyter notebooks facilitate the bundling of executable code with its documentation and output in one interactive environment, and they represent a popular mechanism to document and share computational workflows. The reproducibility of computational aspects of research is a key component of scientific reproducibility but has not yet been assessed at scale for Jupyter notebooks associated with biomedical publications. We address computational reproducibility at two levels: First, using fully automated workflows, we analyzed the computational reproducibility of Jupyter notebooks related to publications indexed in PubMed Central. We identified such notebooks by mining the articles full text, locating them on GitHub and re-running them in an environment as close to the original as possible. We documented reproduction success and exceptions and explored relationships between notebook reproducibility and variables related to the notebooks or publications. Second, this study represents a reproducibility attempt in and of itself, using essentially the same methodology twice on PubMed Central over two years. Out of 27271 notebooks from 2660 GitHub repositories associated with 3467 articles, 22578 notebooks were written in Python, including 15817 that had their dependencies declared in standard requirement files and that we attempted to re-run automatically. For 10388 of these, all declared dependencies could be installed successfully, and we re-ran them to assess reproducibility. Of these, 1203 notebooks ran through without any errors, including 879 that produced results identical to those reported in the original notebook and 324 for which our results differed from the originally reported ones. Running the other notebooks resulted in exceptions. We zoom in on common problems, highlight trends and discuss potential improvements to Jupyter-related workflows associated with biomedical publications.
https://arxiv.org/abs/2308.07333
More about Jupyter notebooks.
The Jupyter Notebook is an interactive computing environment that enables users to author notebook documents that include code, interactive widgets, plots, narrative text, equations, images and even video! The Jupyter name comes from 3 programming languages: Julia, Python, and R. It is a popular tool for literate programming. Donald Knuth first defined literate programming as a script, notebook, or computational document that contains an explanation of the program logic in a natural language (e.g. English or Mandarin), interspersed with snippets of macros and source code, which can be compiled and rerun. You can think of it as an executable paper!
| Research Data Curation and Management Works |
| Digital Curation and Digital Preservation Works |
| Open Access Works |
| Digital Scholarship |