Data sharing in scientific research is widely acknowledged as crucial for accelerating progress and innovation. Mandates from funders, such as the NIH’s updated Data Sharing Policy, have been beneficial in promoting data sharing. However, the effectiveness of such mandates relies heavily on the motivation of data providers. Despite policy-imposed requirements, many researchers may only comply minimally, resulting in data that is inadequately reusable. Here, we discuss the multifaceted challenges of incentivizing data sharing and the complex interplay of factors involved. Our paper delves into the motivations of various stakeholders, including funders, investigators, and data users, highlighting the differences in perspectives and concerns. We discuss the role of guidelines, such as the FAIR principles, in promoting good data management practices but acknowledge the practical and ethical challenges in implementation. We also examine the impact of infrastructure on data sharing effectiveness, emphasizing the need for systems that support efficient data discovery, access, and analysis. We address disparities in resources and expertise among researchers and concerns related to data misuse and misinterpretation. Here, we advocate for a holistic approach to incentivizing data sharing beyond mere compliance with mandates. It calls for the development of reward systems, financial incentives, and supportive infrastructure to encourage researchers to share data enthusiastically and effectively. By addressing these challenges collaboratively, the scientific community can realize the full potential of data sharing to advance knowledge and innovation.
https://doi.org/10.3389/fninf.2025.1570568
| Artificial Intelligence |
| Research Data Curation and Management Works |
| Digital Curation and Digital Preservation Works |
| Open Access Works |
| Digital Scholarship |