FAIR² Data Management leverages AI-assisted curation to structure research data for publication, making it easier to find, reuse, and analyze—both by humans and machines—so researchers can focus on discovery rather than data preparation. By making datasets shareable and optimized for reuse, FAIR² Data Management enhances research efficiency and reproducibility, accelerating breakthroughs in global health, planetary sustainability, and scientific innovation. . . .
FAIR² (FAIR Squared) extends the FAIR principles by defining a formal specification that makes research data AI-ready, aligned with Responsible AI principles, and structured for deep scientific reuse. Compatible with MLCommons Croissant’s AI-ready format, it integrates essential elements for scientific rigor, reproducibility, and interoperability. FAIR² ensures data is richly documented and linked to provenance, methodology, and a detailed data dictionary, creating a context-rich representation of each dataset. It also integrates with TensorFlow, JAX, and PyTorch, enabling AI-driven analysis and easy sharing on Kaggle and Hugging Face, amplifying its impact across disciplines.
| Artificial Intelligence |
| Research Data Curation and Management Works |
| Digital Curation and Digital Preservation Works |
| Open Access Works |
| Digital Scholarship |